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Translation, rotation, and scale invariant image registration
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An algorithm is proposed for registering images related by translation, rotation, and scale based on angular
and radial difference functions. In frequency domain, the spatial translation parameters are computed via
phase correlation method. The magnitudes of images are represented in log-polar grid, and the angular and
radial difference functions are given and applied to measure shifts in both angular and radial dimensions
for rotation and scale estimation. Experimental results show that this method achieves the same accurate
level as classic fast Fourier transform (FFT) based method with invariance to illumination change and
lower computation costs.
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Image registration is a fundamental image processing
task referring to matching images taken at different
times or different viewpoints[1−13]. The frequency do-
main approaches have been much exploited in recent
years[10−13]. Among them, most Fourier-based schemes
use the shift property of Fourier transform to estimate
translation, scale, and rotation[9]. As the representative
one of these methods, the algorithm in Ref. [9] enables ro-
bust estimation with insensitivity to illumination change,
however, its computation burden is heavy with three
fast Fourier transforms (FFTs) plus three inverse fast
Fourier transforms (IFFTs). Another translation esti-
mation tool, difference function (DF), was introduced for
roto-translation estimation in frequency domain[10,12,13].
Although DF performs excellent in translation and rota-
tion estimation, it does not account for scaling due to its
original definition[10].

To resolve this problem, we propose an algorithm for
registration of images related by affine transform, where
the linear components are restricted to scaling and rota-
tion. The scheme consists of four steps. Firstly, phase
correlation is used to compute spatial translation value.
Secondly, the spectra of images are transformed to log-
polar coordinate to decouple rotation and scaling into
translation form. Thirdly, project each spectral image
along every single dimension, the angular one, and the
radial one. Finally, a new DF of two shifted signal is pro-
posed with the property that the shift is only determined
by one zero point of the DF. The angular difference func-
tion (ADF) and radial difference function (RDF) are
defined and used for rotation and scaling estimation. Ex-
perimental results show its applicability with low compu-
tation complexity and feasibility to illumination change.

Considering that the most common relative motion be-
tween objects and camera can be taken as the camera po-
sition movements, rotation around its optical axis, and
focus changing, the affine transformation model with
translation parameter, rotation angle, and scale parame-
ter is adopted in the following discussion.

Assume two images f1(x) and f2(x) related as

f2(x) = f1(Ax + T), (1)

where A is the linear component matrix of affine motion
model, T is the two-dimensional (2D) translation vector.

Hereby we focus on the most commonly used affine
motion model with A specified in the form

A = s

[

cos(∆θ) − sin(∆θ)
sin(∆θ) cos(∆θ)

]

, (2)

where s is the scale factor, ∆θ is the rotation angle of
images. By applying the Fourier transform on both sides
of Eq. (1), we have

F1(ω) = k exp(−j(ω · T))F2(A
′
ω), (3)

where ω is the frequency, k = det(A) = s2, and A′ is
the transpose of A. Let M1 and M2 be the magnitudes
of F1(ω) and F2(ω), from Eq. (3) we get

M1(ω) = kM2(A
′
ω). (4)

Equations (3) and (4) imply that the translation vector T
affects only the phases of Fourier transforms in Eq. (3),
while the linear component matrix A indicates the rela-
tion between the magnitudes of images.

Accordingly, the registration algorithm is composed of
two stages. Firstly, use phase correlation technique to
evaluate T, which is a scheme proved to robustly esti-
mate large spatial translations[9]. Secondly, recover A
from the magnitudes of images, which is the main con-
tribution of this letter.

It is worth noting that in Eq. (4) the magnitudes not
only depend on the linear component matrix A but on
the coefficient k resulting from s. Namely, the task in
this paper is to evaluate the parameters (s, ∆θ) in A
with the presence of k. To resolve the problem, there are
three steps involved. Firstly, decouple the rotation and
scaling into translation form in which we represent both
the spectra in log-polar coordinate as

M1(r, θ) = kM2(r − ∆r, θ − ∆θ), (5)

where r = log ρ, ∆r = log s−1 for ease of notation.
Secondly, take Radon (projection) transform of Eq. (5)

on two sides, denoted formally by R(·). According to the
shifty property, we have

R1(r) = kR2(r − ∆r), R1(θ) = kR2(θ − ∆θ), (6)
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which implies that the 2D translation estimation can
be reduced to evaluations of two one-dimensional (1D)
translation problems, only by directly projecting the
spectral image onto r and θ dimensions. This property
renders respective computation of rotation and scaling
possible with the presence of the magnitude change infor-
mation k. Unlike phase correlation method, which uses
not magnitude information but phase information aim-
ing at eliminating the influence of k, the algorithm in
this paper presents a different technique for translation,
rotation, and scale-invariant image registration at low
computation cost even under varying illumination condi-
tion.

Assume any non-negative 1D function f1(x), f2(x),
x ∈ [0, N ] related by

f2(x) = kf1(x − ∆x). (7)

Define the extended DF as

∆f = fG
1 (x) − fG

2 (−x), (8)

where

fG
i =

fi − f̄i

σ(fi)
, i = 1, 2, (9)

σ(fi) is the standard deviation (STD) of fi, and f̄i is the
mean value of fi. Replacing f2(x) in Eq. (9) with Eq. (7),
then

fG
2 (−x) =

f1(−x − ∆x) − f1(−x − ∆x)

σ(f1(−x − ∆x))

= fG
1 (−x − ∆x), (10)

and then

∆f = fG
1 (x) − fG

1 (−x − ∆x). (11)

Let ∆f = 0, necessarily x0 = −∆x/2, which straight-
forwardly shows that ∆x is determined only by the zero
x0, with nothing dealing with the difference between the
magnitudes of f1(x) and f2(x), denoted by k in Eq. (7).

This result can be easily extended to our purpose of es-
timating (s, ∆θ) by computing the DFs along the angular
and radial dimensions respectively with the outcome of
Eq. (6). Define the ADF as

∆Ang(θ) = R1(θ) − R2(−θ), θ ∈ [0, π], (12)

and ∆θ = −2θ0; define the RDF as

∆Rad(r) = R1(r) − R2(−r + N), (13)

and ∆r = N − 2r0, N is the length of r. Once the trans-
lation ∆r is evaluated, the scaling s can be computed as
s = e−∆r.

The performance of the developed algorithm is exper-
imentally tested on different sets of images. It should
necessarily be noticed that the translation estimation
part using phase correlation method has been proved
most effective and robust in performance[9]. Moreover,
Fourier transform shift theorem supports that, for affine

model, translation parameter can be separately evalu-
ated from the rotation and scaling parameters. More
detailed demonstration of translation problem refers to
Refs. [9,12,13]. Consequently, we lay the stress on the
rotation and scaling estimation performance in the fol-
lowing experiments.

Figure 1 is an example of rotation estimation without
illumination variations and scaling. Figure 1(a) is rotated
randomly in the range of [0, 2π]. The estimation result
is given in Fig. 1(b), where we present the angles that
the image was originally rotated and the corresponding
estimated angle. Clearly, the algorithm achieves effective
tracking of the rotation angles.

The estimation of both scaling and rotation was tested
on ‘plane’ images in Fig. 2. Figure 2(b) is a rotated
and scaled version of Fig. 2(a), with 45◦ rotation angle
and 1.5 times dilation. Figures 2(c) and (d) are M1(r, θ)
and M2(r, θ), the magnitudes of Figs. 2(a) and (b). It is
easy to see the translations in horizontal dimension re-
sulting from rotation and the shifts in vertical dimension
resulting from scaling. Notably, the magnitude change
generated by scaling is also visible. Figure 2(e) corre-
sponds to the ADF of Figs. 2(c) and (d) in the rotation
angle dimension, and Fig. 2(f) corresponds to the RDF
of Figs. 2(c) and (d) in the log ρ dimension. In Fig. 2(e),
where the zero θ0 is clearly visible, there are also other
zeros introduced by either the conjugate symmetry of

Fig. 1. Rotation estimation without illumination variation
and scaling.

Fig. 2. (a) Original image; (b) the 45◦ rotated and 1.5 times
scaled version of (a); (c),(d) magnitudes of (a) and (b), re-
spectively; (e) ADF of (c) and (d); (f) RDF of (c) and (d).
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Fig. 3. Two Lena images with artificially introduced lumi-
nance variations.

Table 1. Rotation and Scale Estimation with
Different Illumination Variation and Scaling

Original Parameters ADF and RDF Phase Correlation

α ρ k ∆θ ρ′ ∆θ′ ρ′ ∆θ′

1 1 1 5◦ 1.01 5.18◦ 1.00 5.18◦

1 1.5 1.5 30◦ 1.52 28.77◦ 1.46 30.18◦

1.5 1.5 2.25 135◦ 1.47 136.79◦ 1.40 135.09◦

1.5 0.8 1.2 313◦ 0.87 312.83◦ 0.81 312.83◦

spectra magnitudes or the discretization of the function,
even by the noise disturbance. However, this can be re-
solved in the same manner described in Ref. [9]. The
estimated result is θ = 44.15◦ and s = 1.57.

Equation (11) also guarantees the algorithm’s invari-
ance to intensity change and it is tested on Lena im-
ages in Fig. 3. The images are rotated and scaled with
different luminance variations. Table 1 reports the esti-
mated results, with the presentation of estimation using
phase correlation method[9] for comparison. Notice that
the accuracy of the proposed algorithm is comparable to
that of the phase correlation method. This result is quite
encouraging concerning with comparison of complexity of
the two methods. To estimate 2D translation, the pro-
posed algorithm requires computation of one FFT and
one IFFT. Furthermore, the scheme involves two times
of computation of ADF and RDF for scale and rotation
using the spectra magnitudes, which are the products
of FFT for no extra computation. Considering an image
with the site of N ×N , when the number of zeros of ADF
or RDF is m, the complexity of ADF and RDF scheme
is

1 × (N(lg(N) − 3) + 2N2 + 4) × Mc

+1 × (3N(lg(N) − 1) + 4) × Ac

+2 × (4N2 + 14N + 4mN) × A

+2 × (12 + 4N) × M. (14)

In comparison, the complexity of phase correlation
method is

6 × (N(lg(N) − 3) + 2N2 + 4) × Mc

+6 × (3N(lg(N) − 1) + 4) × Ac. (15)

In Eqs. (14) and (15), Mc is complex multiplication, Ac

is complex addition, M is real multiplication, A is real

addition. The computation of flip, absolute value etc. is
ignored. Subtraction is taken as addition and division
is taken as multiplication. The computation of log-polar
transform is also ignored. Evidently, compared with the
complexity of the phase correlation method which is up
to three FFTs and three IFFTs, ADF and RDF is far
less than two FFTs plus two IFFTs, even considering
the search procedure for m zeros. The reason is that
FFT or IFFT consumes O(N2) complex multiplications
plus O(N lg N) complex additions, which are enormous
in the order compared with O(N) real multiplications
plus O(N2) real additions.

In conclusion, an algorithm for translation, rotation,
and scale invariant image registration is investigated.
The algorithm is operated in the frequency domain,
where phase correlation is used for translation estima-
tion and magnitude information is employed for rotation
and scale estimation. By transforming the spectral im-
ages into log-polar form, rotation, and scale are reduced
to translations in both angular and radial dimensions.
Then, a new DF is proposed, which determines the trans-
lation value of two shifted functions only by its zero with-
out concerning of any magnitude change. Consequently,
ADF and RDF are defined and used for rotation and
scale estimation. Experimental results demonstrate its
applicability, which is characterized by the same accu-
racy level with classic correlation estimation, the lower
computation complexity, and the invariance to illumina-
tion change.
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